

F1, F2 SERIES

USER'S MANUAL

RS232C INTERFACE UNIT FOR MONITORING F2 - 232GF

- * Users should ensure that the details of this article are studied and understood before attempting to use the unit.
- * Information concerning the programming or handling of data in the host unit is not covered.

MITSUBISHI ELECTRIC CORPORATION

INTERFACE UNIT FOR MONITORING

F 2 -232GF

INDEX

	I	page
1 SPI	CIFICATIONS	3
1.	Introduction	3
1.	2 Dimensions	5
1.	B Dip switch setting	5
1.	Cable pin-out	6
2 CO	NTROL CODES AND FRAME FORMATS	7
2.	Control codes	7
2.	2 Frame format	8
2.	3 The position of the control codes	9
.2.	Error codes	10
3 FU	NCTION COMMANDS	11
3.	Status commands	11
3.	2 Changing the value of a constant	13
3.	B Device address for bit monitor	15
3.	Bit monitor	17
3.	5 Immediate address bit monitor	18
3.	5 Force on / off	19
3.	7 Device address for data monitor	20
3.	B Data monitor	22
3.	Immediate address data monitor	26
3.	0 Data writing	27
3.	1 Waiting time	28
4 AP	PENDIX	29
4.	Function command list	29
4.	2 Command data list	30

1 SPECIFICATIONS

1.1 INTRODUCTION

The transmission cable to be used with the F_2 -232GF interface unit and the host unit should have the specifications shown in section 1.4. This interface unit allows F_1,F_2 and Enhanced F_2 programmable controllers to be monitored by host units such as personal computers. Also it will allow bit set / reset to be made. Program constants can be changed in the RAM or EEPROM but not in the EPROM cassette area.

ITEM		SPECIFICATION	
INTERFACE FORMAT		RS232C (D-SUB 25 pin connection)	
TRANSFER FORMAT		Bi-direction (not simultaneously)	
PROTOCOL		Specialized	
TIMING		Asynchronous	
BAUD RATE		9600,4800,2400,1200 bit/sec	
ERROR CONTROL		Parity and sum check	
	CODE	ASCII	
ከልመል	START	1 bit	
DATA	DATA	7 or 8 bit	
FORMAT	PARITY	1 bit (even or odd)	
	STOP	1 bit	
PO	WER	supplied by PC	
DELAY TI EF	ME BEFORE ROR	about 5sec	
COMMUNICATION DISTANCE		Less than 15m (50ft.)	

1.2 DIMENSIONS mm (inch.)

1.3 SWITCH SETTING

BAUD RATE	9600	4800	2400	1200
SW1	off	on	off	on
SW2	off	off	on	on

DATA LENGTH	7 bit	8 bit	
SW3	off	on	

PARITY	even	odd	
SW4	off	on	

1.4 CABLE PIN-OUT

PIN	SYMBOL	OBJECT	REMARK
1	FG	Frame ground	No connection on the interface side.
7	SG	Signal ground	
2	SD	Send data (TXD)	
3	RD	Receive data (RXD)	
4	RS	Request to send (RTS)	"OFF":When hardware is not ready
5	CS	Clear to send (CTS)	"OFF":Data is not sent
6	DR	Data set ready (DSR)	"ON":Data send permit
20	ER	Data terminal ready (DTR)	"ON":Ready to receive

N.B. Other pins are not connected.

2. CONTROL CODES AND FRAME FORMATS

2.1 CONTROL CODES

SYMBOL NAME		ASCII CODE	REMARK
ENQ	Enquiry	05H	Sent by host only
STX	Start of text	02H	
ETX	End of text	03H	End of enquired data
ETB	End of transmission block	· 17H	
ACK	Acknowledge	06H	
NAK	Negative acknowledge	15H	Error acknowledge with error code
EOT	End of transmission	04H	Initializes interface unit

When EOT is received by the interface unit, it will reset itself ready for the next command. ACK code will not be sent.

(e.g.) data length 7 bit, even parity "ACK"code

2.2 FRAME FORMAT

e.g. SUM CHECK DATA

The sum result is coded from HEX to ASCII.

2.3 THE POSITION OF THE CONTROL CODES

host = e.g personal computer, I/F = interface

The host always initiates the communication with an enquiry ENQ and some interrogation command and data. In the simplest case(a), the interface replies with STX followed by some reply data. In case (b), the interface replies with much data, hence it is divided into blocks. ETB is end of an intermediate block. ETX is the end of the total reply text.

IMPORTANT : After the last ACK, always allow at least 1ms time for the interface unit to reset itself before sending the next ENQ interrogation.

2 INTERROGATION WITH ADDITIONAL DATA BLOCKS

In some interrogation commands from the host, data reply from the interface is not necessary. Such commands only require the interface to store the data sent. Such data may be sent in multi-blocks.

2.4 ERROR CODES

ERROR NO.	ASCII CODE	REMARK
00 _H	$30_{ m H}30_{ m H}$	Sum check error
01 _H	$30_{\mathrm{H}}31_{\mathrm{H}}$	Parity error
02 _H	$30_{ m H}32_{ m H}$	Frame synchronization error
03 _H	$30_{ m H}33_{ m H}$	-
04 _H	$30_{\mathrm{H}}34_{\mathrm{H}}$	Command data error
05 _H	$30_{ m H}35_{ m H}$	Function command error
06 _H	$30_{ m H}36_{ m H}$	Commands which can not be executed during PC run.
07 _H	$30_{ m H}37_{ m H}$	Miscellaneous

If an error code is received, the data block is sent again. There will be further "retries" if further errors do occur.

Number of "retries" for NAK is 3 times.

3 FUNCTION COMMANDS 3.1 STATUS COMMANDS READING OF PC TYPE

command 00H (ASCII $30_H 30_H$) RUN/STOP

ACTUAL DATA BITS SENT

TABLE 1. REPLY FROM INTERFACE

TYPE CODE	ASCII CODE	REMARK
00 _H	$30_{ m H}30_{ m H}$	can not find PC type name
$30_{ m H}$	$33_{ m H}30_{ m H}$	${ m F_1F_2}$ (1k step mode)
$31_{ m H}$	$33_{ m H}31_{ m H}$	F ₂ (2k step mode)

READING OF MODE

$\begin{array}{l} \text{COMMAND } 01_{H} \left(\text{ASCII } 30_{H} \, 31_{H} \right) \\ \text{RUN/STOP} \end{array}$

HOST

INTERFACE

TABLE 2.MODE REPLY FROM INTERFACE

MODE	ASCII	REMARK
00 _H	$30_{ m H}30_{ m H}$	PC STOP
01 _H	$30_{\rm H}31_{\rm H}$	PC RUN
$02_{ m H}$	$30_{ m H}32_{ m H}$	PC ERROR

$\begin{array}{c} 3.2 \text{ CHANGING THE VALUE OF A CONSTANT } \begin{array}{c} \text{command13}_{H}(\text{ASCII31}_{H}33_{H}) \\ \text{RUN/STOP} \end{array}$

Timer, counter and such constants in the program (RAM or EEPROM) area are applicable.

table + page 14	table	4	page	14
-----------------	-------	---	------	----

E	COMN	MAND	STEP	NO.	OBJECT CODE	S	U	М	
Q	31H	33H	$16^3 \ 16^2$	16 ¹ 16 ⁰		н		L	

STEP no. must be within the range of the PC.

e.g. step 0 9 5 4 ASCII 30_H 39_H 35_H 34_H

NOTES

- 1 I/F unit do not check object code
- 2 ACK command will be sent after PC writing.
- 3 If the specified program step is not a constant, PC will not make any changes but I/F unit will still send ACK command.

If the step no is over than 999 (for 1k PC) or 1999 (for 2k $\rm F_2PC$), I / F unit will send NAK command with error code.

TABLE 4 OBJECT CODE FOR CONSTANTS

OBJECT CODE					
100	10-1	101	$45_{ m H}$		

K with decimal point $(45_{\rm H})$

(eg)K12.3

OBJECT CODE

 $32_{\rm H}$ | $33_{\rm H}$ | $31_{\rm H}$ | $45_{\rm H}$

K without decimal point ($46_{\rm H}$)

OBJECT CODE

 $101 | 100 | 102 | 46_{\rm H}$

(eg)K123

OBJECT CODE

 $32_{\rm H}$ | $33_{\rm H}$ | $31_{\rm H}$ | $46_{\rm H}$

 $\rm NOTE:$ For T650-T657 timers , 001 is read as 0.01 sec. The host software must know this constant is for such timers and thus make the necessary calculations.

3.3 BIT DEVICE NO. FOR MONITOR command 21_H (32_H 31_H) RUN/STOP

The commands 21_H (address send) and 20_H (state request) work as a pair. Initially, command 21_H sends all the device numbers to the interface. At a later stage,command 20_H interrogates the state of these devices.

NOTE:

 $1\,$ Addresses of monitor devices will be kept in interface unit. If the I/F unit receives this $\,21_{\rm H}$ command again, kept data will be lost and changed to the new monitor addresses.

 $2\,$ No. of BITS is the number of bit elements to be montored. (thus, the no. of addresses that will be sent). IT must be within $1\text{-}144_D$

If 0 or over than 144_D ,then I/F unit will send NAK with error code ($30_H \ 37_H$) (see p.10 for error codes).

TABLE 5 MONITOR ADDRESSES

1 CONTACT IMAGES FOR X,Y,M,S & T,C ELEMENTS.

2 COIL IMAGE FOR TIMER, COUNTER & PLS M INST.

This image indicates whether the OUT T/C or PLS instruction has been driven. After the intended delay has finished their contact will change their state and these are monitored as contact images in the above shown format.

3 RST IMAGE

This image indicates whether instructions RST C, RST M have been driven.

(eg) RST C460

3.4 BIT MONITOR (1-144 points)

command $20_H (32_H 30_H)$ RUN/STOP

This command is used after the $21_{\rm H}$ command.

Example : ON / OFF INFO FOR 8 DEVICES

Bit b0 corresponds to the first device address sent by the $21_{\rm H}$ command and bit b7 corresponds to the eighth address.

 $4E_H \longrightarrow 34_H 45_H (ASCII)$ Host will receive $34_H 45_H$ for the above example.

eg. WHEN MONITORING ONLY 2 DEVICE .

This bit monitor command sends the address of the monitor device and causes the interface to interrogate the PC and reply immediately to the host.

NOTE:

 $1\,$ No. of bits and no. of addresses sent must be the same. If not then the I/F unit will send NAK with error code (30_H 37_H) (page10 for error codes)

2 Contact or coil image of counters and such elements are differentiated by the address format. See page 16 for address format.

When timers and counters are forced on, their current value is forced to zero and their contacts are forced on. When they are forced off, the current value is reset to the pre-set value and the contacts are opened.

AFFECTED DEVICES

STOP: all X,Y,M,S,T,C

RUN: 1 All X

2 All Y,M,S,T,C

But it needs an OUT instruction of the relevant element. I/F unit do not check this.

3.7 DEVICE ADDRESS FOR DATA MONITOR(T,C,D) command25_H (32_H 35_H) RUN / STOP

ELEMENTS: Timer, counter & data register.

This command ($25_{\rm H}$) sends the monitor device addresses only. Command $24_{\rm H}$ requests and receives the monitored data.

	TABLE 7							
S T X	T C D ADDRESS	T _. C D ADDRESS	• • • • •	T C D ADDRESS	E T X	S H	U	M L

note:

1 T,C,D address will be kept in I/F unit. If the I/F unit receive this $25_{\rm H}$ command again, kept data will be changed to the new T,C,D addresses.

 $2\,$ No. of devices must be 1-8 . If 0 or more than 8 $\,$,then NAK with error code (30_H 37_H) is sent. (see page 10 for NAK format)

3 Do not mix the following three types of addresses :

* current value registers of timer or counter.

- * setting value register of timer or counter.
- * data register

Mixing the current value register addresses of timers and counters is valid. This also applies to setting value registers.

TABLE 7 T,C,D MONITOR ADDRESSES

1 TIMER COUNTER T,C CURRENT REGISTER

(eg) T451 current value register

2 T,C SETTING VALUE REGISTER D DATA REGISTER

(eg)T451 setting value register

3.8 DATA MONITOR

This command is used after the 25_H command

The requested data is sent in correspondence to the addresses sent by command $25_{
m H}$

DATA FORMAT DEFINITION TREE

Data replied from the interface in response to the Data monitor command $24_{\rm H}$ can be in various formats depending on what kind of device it corresponds to (i.e. counter, timer or register). Hence, in order to interpret this data correctly, the host must know whether it is a value of a timer, counter or otherwise.

The rightmost number of the DATA code provides some aid to which device this data belongs. As shown by the above tree, it is not unique and the data can only be interpreted if the device it corresponds to is already known.

Use the correct format from A1-A3, B1-B4 by using the above tree. These format are explained in the next two pages.

TABLE 8 T,C CURRENT VALUE

Data from different devices are sent in different formats.

The host unit must know which data corresponds to which device in order to interpret or scale the data correctly.

TABLE 9 T,C SETTING VALUE DATA REGISTER VALUE

B1 0 - 999 sec TIMER 0 - 999 COUNTER

As in table 8, the host unit must know which data corresponds to which timer or counter in order to interpret the data correctly. Also it must expect the data type to correspond with exactly which data format to use.

3.9 IMMEDIATE ADDRESS DATA MONITOR

command 26_H (32_H 36_H) RUN/STOP

NOTE:

С

1 Applicable elements are:

Timer, counter current value registers.

Timer, counter setting value registers.

Data registers.

2 The T,C,D addresses can be a mixture of different types. (e.g. current value with setting value or data registers).

3.10 DATA WRITING

NOTE:

- 1~ Timer & Counters (T,C) setting value and Data Register (D) are applicable. (Note that the F_1 pc has not setting value registers for T&C.)
- 2 Data of T,C current value register can not be changed.

3.11 WAITING TIME

command $30_{\rm H}$ ($33_{\rm H}$ $30_{\rm H}$) RUN/STOP

This command asks the interface to delay its response for a specified time.

E	СОМІ	MAND	ΤI	ΜЕ	S	U	М
Q	33H	30H	Н	L	Н		L

	Α	
	C	
-	K	
	نش ا	

TIME	CODE	ASCII
0	00 _H	$30_{ m H}30_{ m H}$
10ms	01 _H	$30_{ m H}31_{ m H}$
20ms	$02_{ m H}$	$30_{ m H}32_{ m H}$
>>	>>	>>
"	"	ý)
100ms	0A _H	$30_{ m H}41_{ m H}$

4 APPENDIX

4.1	FUNCTION COMMAND	D
SULVER		Page
	Reading of PC type	11
$01_{\rm H}$	Reading of mode	12
ACCESS	TO PROGRAM AREA	
$13_{ m H}$	Changing the value of a constant	13
MONITO	R	
$20_{ m H}$	Bit monitor 1-144 points (indirect address)	15
$21_{ m H}$	Bit device no. for monitor	17
$22_{ m H}$	Bit monitor 1-8 points (immediate address)	18
$23_{ m H}$	Force on/off	19
$24_{ m H}$	Data monitor 1-8 points (indirect address)	22
$25_{ m H}$	Data device no. for data monitor	20
$26_{ m H}$	Data monitor 1-8 points (immediate address)	26
$27_{ m H}$	Data writing Dt,Dc,D	27
OTHERS		
$30_{ m H}$	Waiting time	28

4.2 FUNCTION COMMAND DATA LIST

COMMAND DATA	PAGE	REMARK
ERROR	10	
PC TYPE	11	e.g. F ₁
STATUS	12	RUN, STOP or ERROR
BLOCK SIZE	15	64 or 32
BLOCK No.	15	Incremented at every block
OBJECT CODE	13,14	K constant in program
STEP No.	13	Step no.
No. of BITS	15,18	bit monitor size
ADDRESS	16	bit device no.
ON/OFF	17	bit on/off info
FORCE	19	to ON or to OFF
No. of DEVICES	20	data monitor
T,C,D ADDRESS	20,21	address for monitor
DATA	22-25	T,C,D contents
TIME	28	waiting time

MEMO

MEMO

HEAD OFFICE : MITSUBISHI DENKI BLDG MARUNOUCHI TOKYO 100 TELEX : J24532 CABLE MELCO TOKYO

These products contain Strategic Products subject to COCOM regulations. They should not be exported without authorization from the appropriate gove rnmental authorities. MITSUBISHI ELECTRIC CORP.

> Effective DEC. 1989 The specifications and designs are subject to change without notice.

JY992D18501A HI-IB-026-A 8912 (SEN) (A1)